Block copolymer nanostructures

نویسندگان

  • Thomas Smart
  • Hannah Lomas
  • Marzia Massignani
  • Miriam V. Flores-Merino
  • Lorena Ruiz Perez
چکیده

JUN-AUG 2008 | VOLUME 3 | NUMBER 3-4 38 Block copolymers occupy a huge area of research because they offer a vast range of possibilities for architecture, size, and chemical composition. Advances in polymer chemistry1, such as anionic polymerisation2 and most recently living radical polymerization3, have enabled a vast array of block copolymers to be synthesized with great control over their architecture, molecular weight, chemical composition, and functionality. Their intrinsic multi-properties allow the combination of different polymers and therefore the design of novel materials potentially comprising several different properties (e.g. thermoplastic, rubber, ductile, electrical conductivity, etc.). In bulk, when the different blocks are chemically immiscible, the balance between the entropically and enthalpically driven phase separation and the chemical bond constraints between the blocks drives the formation of ordered domains4–10. In solution, the interactions between the solvent and the different blocks dictate the ability to form well-defined structures. The architecture, molecular weight, volume fractions of blocks, and chemical functionality can all be set in the synthesis, making designer block copolymers a reality. The ability to effectively design nanoparticles and nanostructures to your preference, coupled with the wide range of applications associated with them, have made them an incredibly popular topic of research. Herein, One of the most important classes of synthetic systems for creating self-assembled nanostructures is amphiphilic block copolymers. By controlling the architecture of individual molecules, it is possible to generate nanostructures either in an undiluted melt or in solution. These ordered nanostructures are tunable over a broad variety of morphologies, ranging from discrete micelles and vesicles to continuous network structures. Their synthetic nature allows the design of interfaces with different chemical functional groups and geometrical properties. This, in combination with molecular architecture, determines the levels of ordering in self-organizing polymeric materials. For these and other reasons, block copolymer micelles, vesicles, and mesophases are finding applications in several areas, ranging from nanocomposites to biomedical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Copolymer Nanostructures for Technology

Nanostructures generated from block copolymer self-assembly enable a variety of potential technological applications. In this article we review recent work and the current status of two major emerging applications of block copolymer (BCP) nanostructures: lithography for microelectronics and photovoltaics. We review the progress in BCP lithography in relation to the requirements of the semicondu...

متن کامل

Electrostatic control of block copolymer morphology.

Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously faci...

متن کامل

Chain-like nanostructures from anisotropic self-assembly of semiconducting metal oxide nanoparticles with a block copolymer.

A facile method is reported for the preparation of chain-like nanostructures by anisotropic self-assembly of TiO(2) and SnO(2) nanoparticles with the aid of a block copolymer in an aqueous medium. Well-defined crystallographic orientations between neighbouring nanoparticles are observed in TiO(2) nanochains, which is important for tailoring the grain boundaries and thus enhancing charge transport.

متن کامل

Capturing by self-assembled block copolymer thin films: transfer printing of metal nanostructures on textured surfaces.

A method to fabricate metal nanostructures by transfer printing, applicable to textured surfaces, is described. The key is the use of self-assembled polystyrene-block-poly-2-vinylpyridine thin films as binding layers. The plasmonic properties of the obtained metal (Ag) nanostructures showed the potential of this method in the design of novel devices.

متن کامل

Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip.

Alignment of perpendicularly oriented lamellar block copolymer domains using an AFM tip is demonstrated. The AFM tip orients the domains through local shearing, resulting in domain alignment parallel to tip travel. AFM tips can also deposit block copolymer nanostructures on heated substrates with a variety of experimentally observed domain alignments.

متن کامل

Large area high density sub-20 nm SiO(2) nanostructures fabricated by block copolymer template for nanoimprint lithography.

We developed simple fabrication methods to effectively transfer the block copolymer nanopatterns to a substrate material. High aspect ratio, sub-20 nm nanopillar and nanohole structures are successfully fabricated in a SiO(2) layer in large area format, and the versatile utilities of these nanostructures as nanoimprint molds are studied. Nanoimprint lithography using these molds makes it possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008